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what makes two phonological representations equivalent?
• one answer from mathematical linguistics: two representations are notational variants if there exists
a bi-interpretable quantifier-free logical transduction between them (Strother-Garcia 2019; Oakden
2020; Danis and Jardine 2019)

• essentially, if a list of rules under a restricted form of knowledge can define all the structure of one
model based on the structure of another (and vice versa), then the models are equivalent

• however, differences that linguistic grammars care about, such as predicted sets of natural classes,
can survive the transduction, therefore QF bi-interpretiblity alone, while important, is not sufficient
for a linguistically relevant notational equivalence

a strong generative capacity for phonology
• under the framework of Miller (2001), strong equivalence is relativized to particular domains such that, for a
given interpretation domain (ID), the output of an interpretation function IF for some model m1 (IFm1→ID)
maps to the same object as the IF for another model m2 in that same domain (IFm1→ID = IFm2→ID). two
potential domains are given below:

contrast preservation both models capture the
same set of basic contrasts

IFuni→C = IFv-feat→C = {p,t,k,u,i,a,…}

natural class preservation the two models do not
predict the same set of natural classes

IFuni→NC ⊃ IFv-feat→NC

these two models are logically equivalent
unified

•

V-place

±dorsal±coronal±labial

C-place

±dorsal±coronal±labial

same features define vowel and consonant place;
dominating node determines phonetic realiza-
tion (à la Clements and Hume 1995)

v-features
•

±back±front±roundC-place

±dorsal±coronal±labial

features defining vowel place disjoint from fea-
tures defining consonant place

• the following is a quantifier-free transduction that translates be-
tween the two models

• the models are therefore logically equivalent

v-features → unified
rt(𝑥1) ∶= rt(𝑥) (1)

+lab(𝑥1) ∶= +round(𝑥) ∨ +lab(𝑥) (2)
+cor(𝑥1) ∶= +front(𝑥) ∨ +cor(𝑥) (3)

+dors(𝑥1) ∶= +back(𝑥) ∨ +dors(𝑥) (4)
−lab(𝑥1) ∶= −round(𝑥) ∨ −lab(𝑥) (5)
−cor(𝑥1) ∶= −front(𝑥) ∨ −cor(𝑥) (6)

−dors(𝑥1) ∶= −back(𝑥) ∨ −dors(𝑥) (7)
C-place(𝑥1) ∶= Place(𝑥) (8)
V-place(𝑥2) ∶= rt(𝑥) (9)
parent(𝑥1) ∶= (parent(𝑥))1 ⇔ ¬vowelFeature(𝑥) (10)
parent(𝑥1) ∶= (parent(𝑥))2 ⇔ vowelFeature(𝑥) (11)
parent(𝑥2) ∶= 𝑥1 ⇔ rt(𝑥) (12)

vowelFeature(𝑥) = +round(𝑥) ∨ +front(𝑥) ∨ +back(𝑥)
∨ − round(𝑥) ∨ −front(𝑥) ∨ −back(𝑥)
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rt(𝑥1) ∶= rt(𝑥) (13)
Place(𝑥1) ∶= C-place(𝑥) (14)
+lab(𝑥1) ∶= +lab(𝑥) ∧ C-place(parent(𝑥)) (15)
+cor(𝑥1) ∶= +cor(𝑥) ∧ C-place(parent(𝑥)) (16)

+dors(𝑥1) ∶= +dors(𝑥) ∧ C-place(parent(𝑥)) (17)
−lab(𝑥1) ∶= −lab(𝑥) ∧ C-place(parent(𝑥)) (18)
−cor(𝑥1) ∶= −cor(𝑥) ∧ C-place(parent(𝑥)) (19)

−dors(𝑥1) ∶= −dors(𝑥) ∧ C-place(parent(𝑥)) (20)
+round(𝑥1) ∶= +lab(𝑥) ∧ V-place(parent(𝑥)) (21)
+front(𝑥1) ∶= +cor(𝑥) ∧ V-place(parent(𝑥)) (22)
+back(𝑥1) ∶= +dors(𝑥) ∧ V-place(parent(𝑥)) (23)

−round(𝑥1) ∶= −lab(𝑥) ∧ V-place(parent(𝑥)) (24)
−front(𝑥1) ∶= −cor(𝑥) ∧ V-place(parent(𝑥)) (25)
−back(𝑥1) ∶= −dors(𝑥) ∧ V-place(parent(𝑥)) (26)
parent(𝑥1) ∶= (parent(𝑥))1 ⇔ ¬V-place(parent(𝑥)) (27)
parent(𝑥1) ∶= (parent(parent(𝑥)))1 ⇔ V-place(parent(𝑥))

(28)

but they are not natural class preserving
• every natural class predicted by the v-features model is predicted by
the unified model

• there are natural classes predicted in unified model that are not
predicted by the v-features model

unified

{ p kp tp pʲ pʷ pˠ kʷ tʷ u y ʉ } and 5 others

v-features

{ i kʲ pʲ tʲ } and 237 others

all and only those segments with substructure +lab

Figure 1: The natural class extensions of the unified and v-features model.
The one class shown is defined by the substructure +lab; the other 5 are the
classes for each value of each place feature labial, coronal, and dorsal.

• this is expected based on the transduction rules of the following
form, such as (2):

+lab(𝑥1) ∶= +round(𝑥) ∨ +lab(𝑥)

• the resulting label on the left side (representing the unified model)
is true if either of the two separate labels in v-features are true

• two classes are collapsed into one

full code showing enumeration and comparison of natural classes:
https://github.com/nickdanis/autosegx

and phonology cares
• case study: /ku/ → [pu]

rule-based grammar with spreading
• assume: assimilation is spreading (Goldsmith 1976; Hayes 1986;
Clements and Hume 1995)

unified

rt rt

V-pl

+lab…

C-pl

+dor
=

spreading possible

v-features

rt rt

+rndPl

… −lab

Pl

+dor +lab

=

spreading not possible; requires feature insertion

constraint-based grammar with Agree
• assume: one Agree-style constraint for every natural-class defining
substructure in the model (Lombardi 1999; Bakovic 2000)

unified
/uk/ Agr[lab] F
uk * W L
up *

Agr[+lab] ≫ F

v-features
/uk/ Agr[lab] Agr[rnd] F
uk L * e L
up * * *

target candidate is harmonically bounded

• the v-features model requires the computational system to uti-
lize a crucially different operation or family of constraints (e.g.
*[-lab][+rnd]) in order to capture the same mapping

• regardless of whether these other operations are possible (they most
certainly are), the point is a change in the representational models,
while keeping grammatical assumptions as consistent as possible,
makes a tangible and nontrivial change in the predictions
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